Caracterizarea microstraturilor ceramice depuse prin pulverizare termic̣ă şi retopite cu fascicule de energie concentrată

Characterization of ceramic microlayers deposited by plasma spraying and remelted by concentrated energy beams

D.R. Pascu, M. Pascu, V. Bîrdeanu, S. Drăgoi
ISIM Timişoara, România

Cuvinte cheie

Microstrat ceramic, pulverizare termicǎ cu plasmă, fasọicule de energie concentrată, microstructură, eroziune cavitațională

1. Generalități

Dezvoltarea ştiinței şi tehnologiei în domeniul ingineressc a impus crearea de materiale ceramice avansate care să poată fi utilizate în condiții deosebite, de exemplu, la solicitări complexe la temperaturi şi presiuni ridicate, la uzură, în medii coṭ̣̣̆ive etc. Astfel, s -au dezvoltat familii de materiale avansate eterogene având prețuri de cost competitive din punct de védere economic, mase inerțiale reduse și caracteristici de exploatare similare pieselor realizate din materiale metalice omogene[1].

Ieşirea din exploatare a unor componente industriale este cauzată î primul rând, de acțiunea combinată a trei fenomene: uzura, coroziunea şi oboseala. Aceste fenomene se manifestă în general în stratul de suprafață al componentei, unde solicitările sunt mai complexe decât în miez.

Domeniul „Ingineriei suprafețelor", ca ştiință tehnică menită să promoveze o nouă strategie în proiectarea de produse utile (scule, piese, componente, etc.) se dezvoltă într-un ritm rapid. Potrivit acestei abordări, piesele sunt concepute ca sisteme compuse din două elemente şi anume:

- microstratul de acoperire a suprafeței componentér,
- substratul componentei (miezul componentei).

Aceste două elemente trebuie să fie astfel proiectateincât sặ devină solidare asigurând caracteristici structựale, mecanice şi funcționale superioare celor specifice materialelor metalice originale.

Abordarea dezvoltării de noi materiale şi microstraturi plurifuncționalizate cu caracteristici îmbunătățite în ceea ce privește solicitările tribologice (uzare) și de eroziune cavitațịonală are la bază depunerea de microstraturi de acoperire pe substíaturi de titan şi aliaje de titan a unor tipuri de materiale performante (ceramice) în proporții variate (amestecuri) folosind pulverizare termică în jet de plasmă, urmată de retopiri, cu fascicule de energie concentrată (fascicul de electroni, fascicul laser).

Caracterizarea structurală şi mecanică a acesțora, completate cu modelarea și optimizarea parametrilor de proces, contribuie la dezvoltarea cunoaşterii ştiințifice şi tehnice în acest domeniu.

Keywords

Ceramic microlayer, plasma thermal spraying, concentrated energy beams, microstructure, cavitational erosion

1. Generalities

The science and technology development in the engineering field imposed the creation of new, advanced ceramics, which can be used in special conditions, for example, to complex stresses at high pressure and temperature, to wear, also in the corrosion environments. So, the new families of advanced materials were developed. These materials have good prices, lower weight and similar characteristics with the same components made of homogeneous metallic materials [1].

The industrial components out of service are due to the complex action of three phenomena: wear, corrosion and fatigue. Generally, these phenomena appear in the surface layer of the components, where the stress is stronger than in the core.
"Surface engineering" field, as technical science, has the aim to promote a new strategy in the designing of useful products (tools, pieces, components, etc.), having a fast development. In this vision, the pieces are the systems made of two main elements:

- covering microlayer of the component surface,
- component sublayer (component core).

These two elements must be designed to be one piece, and to have better structural, mechanical and functional characteristics than the same characteristics of the original metallic materials.

The development of new materials and multifunctional microlayers, having improved characteristics of wear and cavitation erosion resistance, is based on the microlayers deposition on the titanium and titanium alloys sublayers of advanced materials such as ceramics. These ceramic materials are deposited by plasma thermal spraying, followed by remelting with concentrated energy beams (electron beam, laser beam).

The structural and mechanical characterization of these microlayers, and the process modelling and optimization bring an important contribution to the development of scientific knowledge in this field.

Nattriale cerennice

2. Caracterizarea microstraturilor de acoperire performante

Microstraturile de acoperire realizate din materiale ceramice au structură complexă, rezistentă la acțiunea de eroziune cavitațională specifică mediului de lucru, respectiv la uzare prin frecare uscată [2].

Factorii principali ce influențează posibilitățile de realizare a microstraturilor de acoperire din materiale ceramice şi amestecuri de ceramice sunt:

- evaluarea unor procedee de pulverizare termică cu laser a materialelor ceramice pe substraturi metalice, ca alternativă la tratamentele termice superficiale (nitrurare ionică, cementare, etc.);
- morfologia structurii microstraturilor de acoperire depuse prin procedee moderne, în vederea studierii efectelor particulelor de faze secundare şi terțiare asupra caracteristicilor structurale ale substratului de bază;
- modelarea fenomenologică a reacțiilor de interfață microstrat-substrat dezvoltate în procesele de pulverizare termică cu plasmă şi la retopirea cu fascicule de energie concentrată pe baza transformărilor structurale polimorfe.

Parametrii de performanță ai microstraturilor de acoperire din materiale ceramice urmăresc:

- creşterea durității acestora corelată cu rezistența ridicată la uzare, eroziune cavitațională şi la coroziune în medii specifice;
- creșterea rezistenței mecanice la încercarea de smulgere a microstraturilor de acoperire;
- creşterea stabilității termodinamice şi dimensionale corelată cu proprietățile de dilatare și conducție adecvate;
- evitarea formării rețelelor de pori şi implicit scăderea porozității generale;
- creşterea competitivității economice la scară industrială.

Principalele riscuri privind realizarea microstraturilor de acoperire folosind ceramicele ca materiale performante se referă la:

- realizarea de interfețe necorespunzătoare privind aderența microstrat-substrat, defecte de continuitate, prezența microfisurilor şi a microporozității accentuate;
- segregarea după densitate a pulberilor ceramice netopite şi a compuşilor intermetalici dispersați neuniform în zona de aderență;
- prezența tensiunilor interne remanente ale căror valori pot depăşi uneori limita de curgere a substratului metalic, ceea ce conduce la degradarea sistemului substrat-microstrat;
- obținerea unei aderențe necorespunzătoare între elementele sistemului substrat-microstrat.

3. Procedeul de pulverizare termică cu plasmă folosit şi retopirea microstraturilor obținute cu fascicule de energie concentrată

În vederea realizării microstraturilor de acoperire din materiale ceramice s -au ales combinații de materiale ceramice oxidice pe bază de $\mathrm{ZrO}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ dopate cu oxizi de $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}, \mathrm{SiO}_{2}, \mathrm{CaO}$ şi $\mathrm{MgO},[3]$. Pulverizarea termică î jet de plasmă a materialelor ceramice alese, in variantele A...E, prezentate în tabelul $1, s$-a realizat prin procedeul PLASMA JET ARC (PJA), al cărui principiu este prezentat în figura 1.

Procedeul PJA realizează pulverizarea termică cu jet de

2. Advanced microlayers characterization

The covering microlayers performed from ceramics have a complex structure, and a good behaviour to wear and cavitation erosion by dry friction [2].

The main factors, which influence the covering microlayers performed from the ceramics or ceramics mixtures are:

- evaluation of plasma spraying processes of the ceramics on the metallic sub-layers, as alternative to the surface thermal treathents (ion nitriding, carburizing, etc.);
- morphology of the microlayers structures deposited by modern processes, in order to study the effect of secondary and tertiary phases particles on the structural characteristics of the base sublayer;
- modelling of the interface reactions, microlayer-sublayer, developed during the plasma spraying processes and during the remelting with concentrated energy beams, based on the polymorphous structural transformations..

The quality parameters of the covering microlayers have the aim:

- to increase the hardness in correlation with the high resistance to wear, to cavitation erosion and to corrosion in specific environments;
- ! to increase the mechanical resistance in the pulling test of the covering microlayers;
- :to increase the thermodynamic and dimensional stability in correlation with the expansion and conducting properties;
- to avoid the forming of pores lattices, in order to decrease genetal porosity;
- ato improve the economical competitivity in industry.

The main risks to obtain the covering microlayers, using ceramics as advanced materials, are:

- performing bad interfaces concerning the adberence micholayer-sublayer, continuity defects, appearance of miclocracks and micropores;
- 'segregation of the unmelted ceramic powders and of the intermetallic compounds, dispersed non-uniformly in the adhẹrence zone;
- presence of residual internal stresses, having values higher than the yield point of the metallic sublayer, which leads's'to the damaging of the sublayer-microlayer system;
- obtaining a bad adherence between the elements of the sublayer-microlayer system.

3. Plasma thermal spraying and remelting of the obtained microlayers with concentrated energy beams

Int order to perform the covering microlayers from ceramics, the combinations of oxide ceramics based on $\mathrm{ZrO}_{3}^{\mathrm{Bin}}, \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$ doped with $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}, \mathrm{SiO}_{2}, \mathrm{CaO}$ and Mg O were chosen [3]. The plasma thermal spraying of the chosen ceramics using the versions A...E, presented in Table 1, was performed by the procedure named PLASMA JET ARC (PJA). The principle of this procedure is shown in Figure 1.

The procedure PJA performs the thermal spraying with plasma jet, 1, produced by the electric arc, 2, ignited between the cathode, 3 , and the anode 4 . The system has also the supply source, 5 . Plasma jet is projected with high speed by plasma gas, $6,\left(\mathrm{Ar}+6 \% \mathrm{H}_{2}\right)$, on the metallic sublayer, based on titanium.
plasmă 1 , produs de arcul electric 2, amorsat intre electrodul catod 3 şi duza anod 4, alimentat de la sursa de current $\$$ şi proiectat cu viteză ridicată de gazul plasmagen, $\left(\mathrm{Ar}+6 \% \mathrm{H}_{2}\right)$ 6 , pe direcția substratului metalic pe bază de titan.

Figura 1. Principiul procedeului PLASMA JET ARC/ ${ }^{\prime}$ Figure 1. Principle of PLASMA JET ARC, [4]

În jetul de plasmă sunt introduse prin tubul pâlniẹ de alimentare 7, pulberile ceramice oxidice în amestecuri fixé, ce sunt topite şi dirijate spre substratul de titan 8 . Astfel, prin solidificare rapidă se obține microstratul depus 9 .

Microstraturile de acoperire obținute pe suport de titan nealiat (Ti_{2}) şi titan aliat (Ti-6Al-4V), cu grosimea de 12 min au fost retopite cu fascicule de energie concentrată (fascicul de electroni-FE, fascicul laser-FL).

Parametrii principali ai procesului de pulverizare termică si de retopire cu FE și FL sunt prezentaţi in tabelul 1.

The ceramic powders are introduced in the plasma jet using the feeder hopper, 7. These powders, introduced in fixed mixtures, are melted and deposited on the sublayer, 8 . So, the deposited layer, 9 , is obtained, by fast cooling.

The covering microlayers, of 12 mm in thickness, deposited on the unalloyed titanium (Ti 2) and alloyed titanium (Ti-6Al4 V), have been remelted with concentrated energy beam (electron beam-FE, laser beam-FL).

Figura 2. Variația $\bar{g}=f(A, B, C, D, E)^{\prime}$
Figure 2. Variation $g=f(A, B, C, D, E)$
The main parameters of the plasma spraying process and of the remelting with FE and FL are presented in Table 1.

Tabelul 1/ Table 1

Variante de pulveri zare termică / Thermal spraying versions		A	B	C	D	E
Pulverizare termică cu plasmă / Plasma thermal spraying	Curent/Current, I_{5} [Ma]	500	500	500	500	500
	Tensiune / Voltage, $\mathrm{U}_{3},[\mathrm{~V}]$	67... 70	68... 70	58...60	68...70.	68... 70
	Distanța de pulverizare/ Spraying distance $[\mathrm{mm}]$	64	65	90	90	50
' ${ }^{\text {a }}$	Tip ceramică oxidică/ Oxide ceramic type*	$\begin{gathered} 92 \mathrm{ZrO}_{2}+ \\ 8 \mathrm{Y}_{2} \mathrm{O}_{3} . \\ \hline \end{gathered}$	$\begin{gathered} 92 \mathrm{Cr}_{2} \mathrm{O}_{3}+ \\ 5 \mathrm{SiO}_{2}+3 \mathrm{TiO}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 95 \mathrm{ZrO}_{2}+ \\ 5 \mathrm{CaO} \\ \hline \end{gathered}$	$\begin{gathered} 76 \mathrm{ZrO}_{2}+ \\ 24 \mathrm{MgO} \\ \hline \end{gathered}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$
Retopire cu FE/ Remelting with $F E$	Tensiune / Voltage, $\mathrm{U}_{\text {acos }}[\mathrm{kV}]$	60	60	60	60	60
	Curent / Current, $\mathrm{I}_{\text {fisc }}$ [$[\mathrm{mA}]$	30	25	25	20	20
	Distantă de tir / Work distance, D_{6} [mm]	150	150	150	150	150
Retopire cu FL / Remelting with FL	Durată puls /Pulse time, $\mathrm{dp},[\mathrm{ms}]$	0,60	0,60	0,60	0,60	0,60
	Frecvență / Frequency, f, [Hz]	34	34	34	34	34
	Putere puls/ Pulse power, P, [W]	4600	4400	4200	4000	3800

${ }^{\text {F }}$. Granulatia pulberilor folosite la variantele $\mathrm{A}, \mathrm{B}, \mathrm{C}$ și D este de $-65.415 \mu \mathrm{~m}$, iar la varianta E , pulberea are granulatia de- $45+15 \mu \mathrm{~m} . /$
The powders gramulation used in the versions A, B, C and D is $-65+15 \mu \mathrm{~m}$, and for the version E, the powder granulation is $-45+15 \mu \mathrm{~m}$.

Parametrii cuprinşi în tabelul 1 au fost considerați optimi, fiind stabiliți în urma efectuării unor depuneri preliminarii; când s -au verificat atât aderența microstraturilor, cât şi starea suprafețelor în urma retopirii. Nu s-au observat defecte de tip fisuri, pori, etc.

Determinarea grosimii microstraturilor depuse realizate prin diferite procedee de pulverizare termică, înaintea topirii cu fascicule concentrate, s-a efectuat prin măsurători directe folosind aparatul Packet-Leptoskop.

În histogramele din figura 2 se prezintă variația gróșimii medii a microstraturilor \bar{g}, realizate in variantele A, B, C, D, E şi a abaterilor pătratice medii, $\overline{\sigma_{2}}$, determinate în tabeluf 2 .

The parameters presented in Table 1, considered as optimum, have been established after the previous depositions. There were verified the microlayers adherence and the surface state, after remelting. No defects, such as cracks or pores, have been observed.

The thickness of the deposited microlayers was determined by direct measures, using the Packet-Leptoskop apparatus.

In the histograms, shown in Figure 2, there are presented the mean thickness variation, \bar{g}, of the microlayers performed in the versions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and the mean square deviation, $\overline{\sigma_{2}}$, presented in Table 2.
If the spraying time is 15 sec ., in version B (thermal spraying

În condițiile respectării timpului de pulverizare (15 sec.), cu varianta B (pulverizare termică cu amestecuri de trei pulberi ceramice oxidice, $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{SiO}_{2}+\mathrm{TiO}_{2}$) se realizează grosimi medii ridicate de microstraturi ($\bar{g}=73,5 \mu \mathrm{~m}$), în varianta A (amestec pulberi $\mathrm{ZrO}_{2}+\mathrm{Y}_{2} \mathrm{O}_{3}$) si în varianta C (amestec pulberi $\mathrm{ZrO}_{2}+\mathrm{CaO}$) se obțin valori mici ale grosimii medii ale microstraturilor depuse ($\bar{g}=52,3 \mu \mathrm{~m}$, respectiv $58,58 \mu \mathrm{~m}$). În variantele D (amestec pulberi $\mathrm{ZrO}_{2}+\mathrm{MgO}_{2}$) şi E (pubere de $\mathrm{Al}_{2} \mathrm{O}_{3}$), grosimile medii ale microstraturilor realizate sunt cuprinse între 65,16 și $66,30 \mu \mathrm{~m}$.

4. Caracterizarea structurală şi mecanică a microstraturilor realizate

Microstructurile realizate prin pulverizare termică cu plasmă şi retopite cu fascicule de energie concentrată (FE, FL) în variantele $\mathrm{A} . . . \mathrm{E}$ au fost supuse unor examinări și încercări specifice, în vederea evaluării caracteristicilor structurale şi mecanice ale acestor materiale noi, performante.

4.1. Examinări macroscopice

Aspectele macroscopice ale microstraturilor de acoperire realizate în variantele A... E sunt prezentate în figurile $3 \div 7$.

Figura 3. Macrostructuri, varianta $\mathrm{A}+\mathrm{FE}$, substrat $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V} /$ Figure 3. Macrostructures, version $A+F E$, sublayer Ti-6Al-4V

Figura 4. Macrostructuri, varianta B+FL, substrat Ti-6Al-4V/ Figure 4. Macrostructures, version B+FL, sublayer Ti-6Al-4V

Figura 6. Macrostructuri, varianta $\mathrm{D}+\mathrm{FE}$, substrat $\mathrm{Ti}_{2} /$ Figure 6. Macrostructures, version $D+F E$, sublayer $T i_{2}$
using the ceramic powders mixture, $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{SiO}_{2}+\mathrm{TiO}_{2}$), the mean thickness values of the microlayers are higher ($\bar{g}=73.5 \mu \mathrm{~m}$), but in version A (ceramic powders mixture made of $\mathrm{ZrO}_{2}+\mathrm{Y}_{2} \mathrm{O}_{3}$) and in version C (ceramic powders mixture, $\mathrm{ZrO}_{2}+\mathrm{CaO}$), the values of the mean thickness are lower

Tabelul 2 / Table 2

Varianta de pulverizare / Plasma thermal spraying version		A	B	C	D	E
Grosimea medie a microstraturilor / Mean thickness of the microlayers,	$\begin{gathered} \bar{g} \\ {[\mu \mathrm{~m}]} \end{gathered}$	52,30	73,50	58,58	66,90	65,16
Abäterea pătratică medie / Mean square deviation,	$\overline{\sigma^{2}}$	3,89	4,39	3,25	2,80	2,66

($\bar{g} \stackrel{\mu}{=} 52.3 \mu \mathrm{~m}$, and $58.58 \mu \mathrm{~m}$, respectively). In versions D (ceramic powders mixture, $\left.\mathrm{ZrO}_{2}+\mathrm{MgO}_{2}\right)$ and $\mathrm{E}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ powder), the mean thickness values of the performed microlayers are between $65.16 \mu \mathrm{~m}$ and $66.30 \mu \mathrm{~m}$, , i

4. Structural and mechanical characterization of the performed microlayers

The microlayers performed by plasma thermal spraying and remelted with concentrated energy beams (FE, FL), in versions A...E, have been subjected to structural examination and mechanical testing, in order to evaluate the specific structural and mechanical characteristics of these new advanced materials.

4.1. Macroscopical examinations

The macroscopical aspects of the covering microlayers, performed in the versions $\mathrm{A} . .$. E are presented in Figures $3 \div 7$.

Figura 5. Macrostructuri, varianta $\mathrm{C}+\mathrm{FE}$, substrat Ti_{2} / Figure 5. Macrostructures, version $C+F E$, sublayer $T i_{2}$

Figura 7. Macrostructuri, varianta E+FL, substrat Ti-6Al-4V/ Figure 7. Macrostructures, version E+FL, sublayer Ti-6Al-4V

Macrostructurile arătate anterior nu au prezentat defecte de pulverizare termică, iar retopirea cu fascicul de electroni sau cu fascicul laser a permis formarea de microstraturi fine, paralele între ele.

4.2. Examinări microscopice şi încercări de duritate HV1

Examinările microsopice efectuate conform EN 1321:2003 pe secțiunile transversale alé microstraturilor au evidențiat următoarele microstructuri:

- la varianta A - structuri formate din soluție solidă (Zr, Y) şi particule fine de oxizi ai Zr şi Y nedizolvate şi particule de titan de diferite forme (figura 8), având duritătic cuprinse între 306 și 495 HV1;

Figura 8. Microstructură, varianta $\mathrm{A}+\mathrm{FE},[\operatorname{Atac} \mathrm{HCl}, 100 \mathrm{x}] /$ Figure 8. Microstructure, version A+FE, [Etched HCl, i'OOx]

- la varianta B - structuri mixte formate din soluții.solide ternare $(\mathrm{Cr}, \mathrm{Si}, \mathrm{Ti})$ cu particule fine de oxizi de $\mathrm{Cr}_{3}: \mathrm{Si}, \mathrm{Ti}$ nedizolvate şi cu particule neregulate de titan (Figura 9), la care duritățile variază între 362 și 742 HV1;
- la varianta C - structuri compuse din soluții solide binare pe bază de oxizi de Zr și Ca şi particule fine de titan nedizolvate (figura 10), ale căror durități sunt cuprinse între 353 și 686 HV 1 ;

Figura 10. Microstructură, varianta C+FE, [Atac HCl, 100x]/ Figure 10. Microstructure, version C+FE, [Etched HCl, 100x]

- la varianta D - structuri formate din soluții solide binare de oxizi de Zr şi Mg cu zone de compuşi MgO_{2} şi, $\mathrm{ZrO} \mathrm{O}_{2}$ şi particule fine, neregulate de titan (figura 11), la care durităţicile variază între 418 și $677 \mathrm{HV1}$;
- la varianta E - structuri formate din alumină $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ solidificată şi particule fine de oxizi inferiori ai aluminiului,

The presented macrostructures have not the thermal spraying defects, and the remelting with electron beam or laser beam allowed the appearance of fine, parallel microlayers.

4.2. Microscopical examinations and hardness test, HV1

The microscopical examinations, made in accordance with EN 1321:2003, in the cross sections of the microlayers, evinced the next microstructures:

- in the version A - structures made of solid solution (Zr , Y) and fine particles of unsolved oxides of Zr and Y , and titanium particles of different shapes (Figure 8), having the hardness values between 306 and 495 HVl ;
- in the version B - hybrid structures made of ternary solid solutions $(\mathrm{Cr}, \mathrm{Si}, \mathrm{Ti})$ and fine particles of unsolved oxides of $\mathrm{Cr}, \mathrm{Si}, \mathrm{Ti}$ and non-uniform titanium particles (Figure 9), having the hardness values between 362 and $742 \mathrm{HV1}$;

Figura 9. Microstructură, varianta $\mathrm{B}+\mathrm{FE}$, [Atac $\mathrm{HCl}, 100 \mathrm{x}] /$ Figure 9. Microstructure, version B+FE, [Etched HCl, 100x]

- in the version C - structures made of binary solid solutions, based on Zr and Ca , and unsolved, fine particles of titanium ((Figure 10). The hardness values are between 353 and $686 \mathrm{HV1}$;
- in the version D - structures made of binary solid solutions of Zr and Mg oxides with zones of compounds MgO_{2} and ZrO_{2}, and fine particles, non-uniform of titanium (Figure 11), having the hardness values between 418 and 677 HV ;

Figura 11. Microstructură, varianta $\mathrm{D}+\mathrm{FE},[\operatorname{Atac} \mathrm{HCl}, 100 \mathrm{x}] /$ Figure 11. Microstructure, version D+FE, [Etched $\mathrm{HCl}, 100 \mathrm{x}$]

Neteriale cerannice

respectiv particule fine de titan（figura 12），a căror duritate este cuprinsǎ între 400 şi 772 HV ；

Figura 12．Microstructură，varianta $\mathrm{E}+\mathrm{FL},[\operatorname{Atac} \mathrm{HCl}, 100 \mathrm{x}] /$ ， Figure 12．Microstructure，version E＋FL，［Etched HCl，100x］

Toate structurile examinate nu au prezentat microfisuri，iar duritățile minime s－au obținut la microstraturile de acoperire depuse pe titanul tehnic，marca Ti2，iar valorile maxime s－au înregistrat la microstraturile depuse pe titanul aliat，marca Ti－6Al－4V（Figurile 13 şi 14）．

Varianta de pulverizare／Plasma spraying version
Figura 14．Variația $\mathrm{HV} 1=\mathrm{f}$（A，B ，C，D，E）pe microstraturile depuse pe titan aliat şi retopite cu FE şi FL／
Figure 14．Variation $H V I=f(A, B, C, D, E)$ in the microlayers deposited on the alloyed titanium and remelted with FE and FL

Duritatea a fost determinată conform EN ISO 6507－1：2006． In general，microstraturile retopite cu fascicul laser（FL）au durități mai ridicate decât microstraturile retopite cu fascicul de electroni（FE），fapt datorat răcirii ultrarapide a microstraturilor retopite cu fascicul de electroni și obținerii structurilor preponderant，aciculare．

Estimatorul de durificare locală，$\Delta \mathrm{HV} 1$ se calculează cu relația（1）：

$$
\begin{equation*}
\Delta H V 1=\frac{H V 1 \max -H V 1 \min }{H V 1 \max } \cdot 100,[\%] \tag{1}
\end{equation*}
$$

in care ：
－ $\mathrm{HV1}_{\text {max }}$ este duritatea HVI maximă a unei zone cercetate；
－ $\mathrm{HV1}_{\text {min }}$ este duritatea HV1 minimă a altei zone cercetate．
Dacă valoarea $\triangle H V 1 \geq 50 \%$ ，atunci se consideră că pe zonele cercetate apar durificări structurale locale accentuate．

În tabelul 3，se prezintă valorile estimatorului $\triangle H V 1$ ， determinat cu relația（1），pentru materialele de bază（MB）şi pentru microstraturile de acoperire（MT）．

8 in the version E －structures made of solidified alumina $\left(\mathrm{Al}_{2}^{\prime} \mathrm{O}_{3}\right)$ ，and fine particles of lower oxides of aluminium，and fine particles of titanium，respectively（Figure 12）．The hardness values are between 400 and 772 HV1．

No microcracks have been observed in all the examined struetures．The minimum hardness values have been obtained in 鼠e covering microlayers deposited on the technical titaplium，Ti2，and the maximum values have been recorded in the covering microlayers deposited on the alloyed titanium， Ti－6Al－4V（Figure 13 and Figure 14）．

1．Varianta de pulverizare／Plasma spraying version
Figura13．Variaţia $H V 1=f(A, B, C, D, E)$ pe microstraturile depuse pe titan nealiat şi retopite cu FE şi FL／
Fisure 13．Variation $H V I=f(A, B, C, D, E)$ in the microlayers dep．sited on the unalloyed titanium and remelted with FE and FL

The hardness was determined in accordance with EN ITSO 6507－1：2006．

Gienerally，the remelted microlayers with laser beam（FL） have hardness values higher than the remelted microlayers withitelectron beam（FE），owing to the fast cooling of these miofolayers．In this case，the most of structures are acicular．

The local hardening estimator，$\triangle H V 1$ ，can be calculated using the equation（1）：

$$
\begin{equation*}
\Delta H V 1=\frac{H V 1 \max -H V 1 \min }{H V 1 \max } \bullet 100,[\%] \tag{1}
\end{equation*}
$$

where：
－ $\mathrm{HV} 1_{\text {max }}$ is the maximum hardness HV 1 in one researched j zone；
－ $\mathrm{HV} 1_{\text {min }}$ is the minimaum hardness HV1 in another
researched zone．
If the value $\triangle H V 1 \geq 50 \%$ ，it can be considered that，in these researched zones，there are strong local structural hardenings．

I⿱⿴⿰\zh25⿻コ一⿱䒑土⺝刂：Table 3，there are presented the estimator $\triangle H V 1$ values， determined with relation（1），for the base materials（MB）and for ene covering microlayer（MT）．

Generally，the covering microlayers performed in the versions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and remelted with electron beam or laser beam，also the sublayers from unalloyed titanium $\left(\mathrm{Ti}_{2}\right)$ andifrom the alloyed titanium（ $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ ）have the estimator $\Delta H y 1$ less than 50% ，what means there is no strong local hardening，even the hardness values of microlayers are higher， specific to the analyzed versions．

4．3．Cavitational erosion test

Eihe selection of the materials for the mechanical construction，subjected to cavitation，is made taking into consideration their mechanical characteristics（static and

Pe ansamblu, microstraturile de acoperire realizate în variantele A, B, C, D, E şi retopite cu fascicul de electronł̀ sau cu fascicul laser, precum şi substraturile din titan nealiat (Ti2)
dynamic). Also, it must take into account the corrosion behaviour, that can be evaluated by usual electrochemical methods, [5].

Tabelul 3/ Table 3 +

Varianta de pulverizare termică / Plasma thermal spraying version	9) atopire cu fascicul de electroni / $^{\text {a }}$)			
		etopire cu f melting with	de elec ron bea			Retopire Remelting	$\begin{aligned} & \text { icul las } \\ & \text { er beal } \end{aligned}$	
	MB		MT		MB		MT	
	Substrat/Sublayer		Substrat/Sublayer		Substrat/Sublayer		Substrat/Sublayer	
	Ti2	Ti-6Al-4V	Ti2	Ti-6Al-4V	Ti2	Ti-6Al-4V	Ti2	Ti-6Al-4V
A	8,41	4,62	22,72	3,88	2,95	3,27	5,60	12,32
B	2,42	2,60	2,45	7,33	7,77	3,62	9,13	17,11
C	12,22	2,68	10,85	5,90	3,42	5,74	8,60	7,28
D	1,41	1,48	5,21	8,09	3,39	2,49	2,43	4,07
E	5,18	3,98	3,08	7,83	1,89	6,63	4,69	7,77

şi titan aliat (Ti-6A1-4V) prezintă un estimator al durifiçării locale sub 50%, ceea ce atestă lipsa unei durificări locale accentuate, chiar dacă duritățile microstraturilor real!zate prezintă valori ridicate, specifice variantelor analizate.

4.3. Incercări la eroziune cavitațională

La selecția materialelor pentru construcții mecanicelcare sunt expuse şi unor solicitări de cavitaţie, se porneşte î geheral de la valorile caracteristicilor mecanice (statice şi dinamice). De asemenea, se are in vedere şi comportarea la coroziune apreciată prin metode electrochimice convenționale.

Este de înțeles dorința de a se obține unele indiçații cuprinzătoare asupra comportării la cavitație pornind de la aceste date cunoscute ale materialelor şi fără a mai eféctua încercări suplimentare ce pot fi costisitoare.

Asemenea corelații vor fi îngreunate fundamental de complexitatea solicitărilor la cavitație și de interdependențele dintre acestea:

- solicitarea corozivă într-o curgere foarte turbulentặ;
- solicitarea mecanică locală de înaltă frecvență:și cu caracter pulsator;
- o mare rezistență la inițierea şi propagarea fisurilorg
- reacțiile de schimb care se repercutează atât asupra comportării mecanice cât şi asupra comportării electrochilmice.

În numeroase lucrări s-a încercat o corelare a comportặrii la cavitație cu caracteristicile mecanice ale materialului (duritate, energie de rupere, etc.). Rezultatele obținute nu au fóst în totalitate mulțumitoare deși condițiile experimentale (osclilații de înaltă intensitate) ofereau cele mai bune premize peñtru o corelație de succes.

Principala dificultate, de exemplu la o componentă mecànică preponderentă a atacului, constă în particularitatea solicịtării la cavitație care se desfaşoară atât în spațiu cât şi în timp pe foarte mici dimensiuni.

Caracteristicile mecanice sunt determinate ca välori integrale, la care elementele structurale de finețe (limitele grăunților, limitele dintre faze, caracteristicile diferite ale fazelor) vor putea fi luate în considerare numai ca efect însumat.

In general, comportarea materialelor acoperite cu microstraturi, la solicitări prin implozia bulelor cavitaționale, este reprezentată prin curbele de pierdere masică în funcție de durata de încercare. Această descriere integrală a reacției materialului depus constituie, în prezent, metoda cea mai des folosită. Comparativ cu alte metode, aceasta are marele avantaj

It is necessary to obtain more information about the cavitation behaviour, based on the known characteristics of the materials, without any additional testing, which can be expensive.

These correlations can be difficult, taking into consideration the complexity of the loadings to cavitation and the relations between them:

- corrosive stress in a very strong flowing;
- local mechanical loading of high frequency, having a pulse character;
- high resistance to cracking initiation and propagation;
- exchange reactions, which influence the mechanical and electrochemical behaviour.

In many papers, it was made a correlation between the cavitation behaviour and the mechanical characteristics of the materials (hardness, impact energy, etc.) The obtained results were not satisfactory, although the experimental conditions gave the best conditions (oscillations of high intensity) for a successful correlation.

The mechanical characteristics are determined as integral values, which the fine structural elements (grain boundaries, phases limits, different characteristics of phases) will be taken into consideration, only as total effect.

Generally, the behaviour of covered materials with microlayers, to cavitation bubbles implosion is represented by the curves of weight loss depending on testing time. This description is now the most used method, which can be applied in laboratory, with good quantitative results. The forming and behaviour of the cavitation bubbles is influenced by changing of the geometric and hydrodynamic parameter. Also, in laboratory, it is possible to obtain the reproducible results.

The special samples have been made from the probes covered with microlayers, performed in the versions A...E. The shape and the dimensions of these samples are presented in Figure 15.

The cavitational erosion test was made in the magnetostrictive station, having the next characteristics:

- distance of the sample immersion: 3-5 mm;
- oscillation frequency: 7000 Hz ;
- oscillation amplitude: $47 \mu \mathrm{~m}$;
- work environment: good water at $+20^{\circ} \mathrm{C}$.

The testing was made at the atmospheric pressure.
The total time for testing was 165 minutes, in stages of 5 , 10,15 minutes. After every testing stage, the samples have

Háa poate fi aplicată in lucrări de laborator cu bune rezultate tantitative.
6. Formarea şi comportarea bulelor cavitaționale este foarte Gisor influențată de schimbarea parametrului geometric şi hidrodinamic. Totuşi, este posibil ca în laborator prin abordarea corectă a cercetărilor să se obțină rezultate reproductibile.
Din probele acoperite cu microstraturile realizate in variantele A...E, s-au executat epruvete speciale, având forma şi dimensiunile din figura 15.

Acestea au fost incercate la eroziune cavitațională într-o staţie magnetostrictivă cu următoarele caracteristici :

- distanța de imersare a epruvetei: $3-5 \mathrm{~mm}$;
- frecvența de oscilație: 7000 Hz ;
- amplitudinea oscilațiilor: $47 \mu \mathrm{~m}$;
- mediul de lucru: apă potabilă la $+20^{\circ} \mathrm{C}$.

Incercarea a avut loc la presiunea atmosferică.
Durata totală a încercării a fost de 165 minute, fracționată fin etape de $5,10,15$ minute. După fiecare etapă de încercare probele au fost spălate în apă distilată, alcool și acetonă, iar ulterior au fost uscate în curent de aer și cântărite cu o balanță care permite citirea a şase cifre semnificative.

In urma încercărilor cavitaționale probele au fost secționate perpendicular pe suprafața de impact şi pregătite metalografic inn vederea evidențierii pe de o parte a sensibilității materialului la ecruisare mecanică, iar pe de altă parte, a modului de propagare a fisurilor de oboseală. Totodată, suprafețele erodate au fost examinate la microscopul electronic cu baleiaj, utilizând tehnica electronilor secundari.

- Examinarea la microscopul electronic cu baleiaj (MEB) a sectiunilor prin probele erodate, reliefează prezența stratului de suprafaţă ecruisat mecanic şi a smulgerilor de compuși şi de alte faze secundare fragile incoerente cu rețeaua masei de bază (figura 16).

Figura 16. Microstrat de suprafaṭă degradat cavitaţional, varianta $\mathrm{A}+\mathrm{FE}$, substrat Ti-6Al-4V, [500x]/
Figure 16. Surface microlayer damaged by cavitation, version $A+F E$, sublayer Ti-6Al-4V, [500x]

De asemenea, pe suprafața microstratului de acoperire degradat sub acțiunea imploziilor bulelor cavitaționale, se observă formarea unei multitudini de microcratere cu diametre cuprinse între 3 şi $6 \mu \mathrm{~m}$, (Figura 17).

Amorsarea smulgerilor de material are loc îndeosebi pe particulele de compuși fragili existenți în matricea de bază. Deoarece microstratul ceramic prezintă caracteristici de rezistență mecanică ridicate (durități de maximum 677 HV1),
been washed in distilled water, alcohol, and acetone, dried in air and weighed with an accuracy of six decimals.

After the cavitational test, the samples have been cross cut on the impact surface and metallographically prepared. The metallographic examination had the aim to evince the sensitivity of the material to mechanical cold hardening, and the efracking propagation to fatigue. Also, the eroded surfaces were been examined by scanning electron microscopy with secondary electrons.

gura 15. Epruvetă de încercare la corożiune cavitaţională/ Figure 15. Sample for cavitational erosion test

Examination by scanning electron microscopy (SEM) of the sections evince the presence of the mechanical cold hardened layer, different compounds, and other secondary brittle phases, cohesionless with the base matrix (Figure 6).

Also, on the covering microlayer surface, damaged by the cavitation bubbles implosion, it is observed the forming of many: microholes, having diameters between 3 and $6 \mu \mathrm{~m}$ (Figure 17).

Figura 17. Microstrat de suprafaṭă degradat cavitațional, varianta A+FE, substrat Ti-6Al-4V, [1000x]/
Figure 17. Surface microlayer damaged by cavitation, version $A+F E$, sublayer Ti-6Al-4V. [1000x]

Thê initiation of the material pulling-out is made on the particles of the brittle compounds existing in the base matrix. Because the ceramic microlayer has high mechanical resistance (hardréss of maximum 677 HV 1), there are not strong flowing processes, only a significant increasing of the dislocations density, producing the formation of microcracks and propagation of fracture by fatigue.
vârfurile de presiune nu conduc la procese intense de curgere, ci doar la creşterea semnificativă a densității de dislocațií cu formarea ulterioară a microfisurilor și propagarea ruperii prin oboseală.

Viteza de eroziune cavitațională, $\mathrm{v}_{\text {erc }}$, se calculeaz̛ă cu relația (2):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{erc}}=\Delta \mathrm{m} / \mathrm{t} \tag{2}
\end{equation*}
$$

in care:

- $\Delta \mathrm{m}$ este diferența de masă față de valoarea determinată anterior, mg;
- t este durata unei testări sau timpul de atac, în min.;

Tabelul $4 /$ Table 4

Timp de atac/ Testing time, T [min.]	Viteza de eroziune cavitațională/ Cavitational erosion rate, $\dot{-} \quad \mathrm{V}_{\mathrm{cc}}[\mathrm{mg} / \mathrm{min}$.]									
	Varianta/ Version A		Varianta/ Version B		Varianta/ Version C		Varianta/ Version D		Varianta/ Version E	
	$\begin{gathered} \text { Min. } \\ \text { val. } \end{gathered}$	Max. val.	$\begin{gathered} \text { Min. } \\ \text { val. } \\ \hline \end{gathered}$	Max. val.	Min. val.	$\begin{gathered} \text { Max. } \\ \text { val. } \end{gathered}$	Min. val.	Max. val.	$\begin{aligned} & \text { Min. } \\ & \text { val. } \\ & \hline \end{aligned}$	Max. val.
5	0,016	0,048	0,030	0,048	0,040	0,092	0,026	0,900	0,185	0,204
15	0,012	0,037	0,027	0,037	0,031	0,085	0,031	0,875	0,100	0,120
30	0,021	0,049	0,023	0,060	0,027	0,077	0,023	0,325	0,085	0,095
45	0,037	0,070	0,027	0,063	0,046	0,082	0,023	0,219	0,110	0,145
60	0,043	0,073	0,063	0,064	0,072	0,081	0,057	0,141	0,112	0,145
75	0,044	0,073	0,062	0,070	0,075	0,084	0,055	0,132	0,114	0,144
90	0,041	0,071	0,064	0,065	0,074	0,083	0,059	0,134	0,098	0,145
105	0,045	0,072	0,064	0,067	0,074	0,085	0,058	0,131	0,115	0,147
120	0,044	0,073	0,063	0,065	0,075	0,083	0,061	0,132	0,120	0,145

In tabelul 4 sunt prezentate valorile vitezei de eroziune, $\mathrm{v}_{\text {erc }}$, calculate cu relația (2) pentru epruvetele realizate în variantele A...E şi testate în stația magnetostrictivă.

Analizând valorile experimentale obținute, se pot face următoarele aprecieri:

- la variantele $\mathrm{A}, \mathrm{B}, \mathrm{C}$, apare o tendință de creștere a vitezei de eroziune cavitațională spre sfârşitul duratei de testare, respectiv o egalizare a vitezei de eroziune cavitaționale, după două perioade, la varianta E şi o creştere a vitezei de eroziune cavitaţională în primele perioade de încercare, la varianta D;
- la variantele A...E, valorile minime ale vitezei de eroziune cavitațională s -au obținut la epruvetele retopite cu fascicul laser;
- se observă o bună comportare la cavitaţie a microstraturilor de acoperire din zirconia $\left(\mathrm{ZrO}_{2}\right)$ dopată cu oxizi ceramici $\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{CaO}\right.$ și MgO$)$.

Degradarea lentă, în timp, a microstraturilor ceramice cu viteze de eroziune diferite atestă o slabă sensibilitate a acestora la fenomenele de ecruisare mecanică.

4.4. Încercări la uzare prin frecare uscată

Solicitările de suprafață, care apar în decursul funcțion̆ării sistemelor tehnice sunt datorate contactului și mişcării relative dintre elemente şi conduc la apariția unor tensiuni de suprafață. Acestea determină pierderi de energie şi de material din cauza frecării, dar şi modificări ale elementelor ca rezultat al uzării. Din punct de vedere tribologic legăturile subecare pot interacționa două elemente ale unui sistem industrial au fost categorisite în patru clase de cuple de frecare, in funcție de modul în care se produce interacțiunea dintre ele. .i

Uzarea prin frecare aplicată asupra probelor acoperişe cu microstraturi ceramice în variantele A...E și retopite cu fascicule de energie concentrată (FE, FL) poate fi descrisă ca un proces

The cavitational erosion rate, $\mathrm{v}_{\text {erc }}$, can be calculated using the relation (2):

$$
\begin{equation*}
\mathrm{v}_{\mathrm{erc}}=\Delta \mathrm{G} / \mathrm{t} \tag{2}
\end{equation*}
$$

where:

- $\Delta \mathrm{G}$ is the weight loss in comparison with the previous value, in mg;
- t is the testing time, in min.

In Table 4, there are presented the values of cavitation erosion rate, $v_{\text {erc }}$, calculated by relation (2), for the samples performed in versions A...E and tested in the magnetostrictive station.

Analyzing the obtained experimental values, one can say that:

- at the versions A, B, C, it is observed a tendency to increase the cavitation erosion rate, at the end of the test, and an equalization of the cavitation erosion rate after two periods, at the version E , and an increasing of the cavitation erosion rate, in the first periods of testing, at the version D ;
- at the versions $\mathrm{A} . . . \mathrm{E}$, the minimum values of the cavitation erosion rate have been obtained for the samples remelted by laser beam;
- it can be observed a good behaviour to cavitation of the covering microlayers from zirconia $\left(\mathrm{ZrO}_{2}\right)$ doped with ceramic oxides $\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{CaO}\right.$ and MgO$)$.

The slow degradation, in time, of the ceramic microlayers with different cavitation erosion rates, shows their lower sensitivity to mechanical cold hardening phenomena.

4.4. Wear test by dry friction

The surface loadings, which can appear during the technical systems exploitation, are due to the contact and the relative moving between the elements and lead to the appearance of surface stresses. Because of this, there are many energy and material losses, as a result of friction, even modifications of elements owing to the wear. From the tribologic point of view, the interconnections between two elements of the industrial system can be classified in four classes of friction couples, depending on the way they are produced.

The wear by friction applied to the samples, covered with ceramic microlayers in versions A...E and remelted with concentrated energy beams (FE, FL), can be described as a destroying process of the surface microlayer of a solid body at the mechanical interaction under the action of another
de distrugere a microstratului superficial al unui corp solid la interacțiunea mecanică cu un alt corp solid sub acțiunea unei sarcini exterioare, datorită mişcării relative a celor două corpuri [6].
Etapele procesului de încercare şi evaluare sunt:

- Pregătirea şi identificarea cuplului de materiale,
- Analiza şi înregistrarea stării inițiale,
- Aplicarea setului de solicitări,
* Analiza şi măsurarea parametrilor după procesul de incercare la uzare,
- Prelucrarea şi compararea rezultatelor obținute.

Forma epruvetelor pe care s-au aplicat microstraturile de materiale ceramice conform variantelor A...D este cilindrică, teşită, cu dimensiunile A 30×10 mm (Figura 18).

Figura 18. Forma epruvetelor de încercare la uzare a) suprafataa activă; b) simbol de marcare/ Figure 18. Shape of the wear test samples a) active surface; b) mark $^{\text {a }}$

Conform procedurii de încercare, evaluarea comportării epruvetelor la uzare trebuie să se facă prin compararea maselor epruvetelor înainte de derularea procesului și după finalizarea lui.
Fiecare epruvetă a fost supusă unui proces de uzare prin frecare uscată, pe o mașină MTU (Figura 19), ai cărei parametrii sunt :

* forța de apăsare: 15 daN ;
- turația axului: 400 rpm ;
- durata unui ciclu de uzare: 30 ore.

In vederea evaluării comportării la uzare a microstraturilor realizate, s-a analizat pierderea de masă, $\Delta \mathrm{G}$, pentru fiecare epruvetă. Rezultatele obținute sunt inserate în tabelul 5, menționându-se şi durata totală a procesului de uzare prin frecare uscată.

Tabelul 5/ Table 5

Varianta analizată (epruveta) Analyzed version (sample)	Perderea de masă/ Weight loss, $\Delta \mathrm{G}[\mathrm{g}]$	Durata uzării/ Wear testing time, $\mathrm{T}[\mathrm{h}]$
$\mathrm{A}(\mathrm{A} 43 \mathrm{LAS})$	0,215	140
$\mathrm{~A}(24 . \mathrm{FE})$	0,446	140
$\mathrm{~B}(5 . \mathrm{LAS})$	0,341	140
$\mathrm{~B}(3 \mathrm{a} . \mathrm{FE})$	0,224	140
$\mathrm{C}(18 . \mathrm{LAS})$	0,372	140
$\mathrm{C}(8 . \mathrm{FE})$	0,195	140
$\mathrm{D}(3 . \mathrm{LAS})$	0,452	140
$\mathrm{D}(6 . \mathrm{FB})$	0,166	140

Analiza vizuală a suprafețelor epruvetelor supuse la uzare prin frecare uscată a evidențiat faptul că microstraturile depuse pe titan nealiat şi aliat prezintă o bună aderență la materialul de bază. Nu au fost situații de desprindere sau smulgere a microstraturilor de pe substratul metalic.
external loading, owing to the relative moving of the two bodies [6].

The stages of the testing and evaluation process are:
n preparing and identification of the material couple,
nanalysis and recording of the initial state,

- applying the loading set,
*: analysis and measuring the parameters after the wear testing,
- computer processing and comparison of the results obtainned.

The shape of the samples, with deposited ceramic microlayers, in versions A...D is cylindric, bevelled, having the dimensions A $30 \times 10 \mathrm{~mm}$ (Figure 18).

In accordance with the test procedure, the evaluation of the samples behaviour to wear must be made by comparing the samples weight before and after the testing process.

Eyery sample was subject to a wear process by dry friction, using an equipment, MTU. This equipment, presented in Figure 19, has the next parameters:

* pressure: 15 daN;
- axle speed: 400 rpm ;
- time of wear cycle: 30 hours.

Figura 19. Instalația MTU/
Figure 19. MTU equipment
In order to evaluate the wear behaviour of the performed mictolayers, the weight loss, $\Delta \mathrm{G}$, has been analyzed, for every sample. The obtained results are presented in Table 5, mentioning the total wear time by dry friction.

Visual examination of the samples surfaces, subject to a wear process by dry friction, evinced a good adherence of the microlayers deposited on the unalloyed and alloyed titanium, on the base material. There were no situations of detachment or pulling-out of the microlayers from the metallic sublayer.

The variation of the weight loss, $\Delta \mathrm{G}$, in comparison with wear time by dry friction, T, is presented in Figure 20.

Analyzing the variation $\Delta \mathrm{G}=\mathrm{f}(\mathrm{T})$, it is observed that, in the versions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, the loss weight was between 0.166 g and 0.452 g , values recorded in the version D , and the wear time was 140 hours, for all the versions.

Variația pierderii de masă, $\Delta \mathrm{G}$ în funcție de durata procesului de uzare prin frecare T este prezentată in figura 20.

Analizând variația $\Delta \mathrm{G}=\mathrm{f}(\mathrm{T})$ la încercarea la uzare a microstraturilor obținute prin aplicarea variantelor de

Figura 20. Variația $\Delta \mathrm{G}=\mathrm{f}(\mathrm{T}) /$ Figure 20. Variation $\Delta G=f(T)$
pulverizare $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ combinate cu retopiri cu fascicule concentrate de energie (fascicul de electroni şi fascicul lasér), se observă că la variantele analizate pierderile de masă variază în domeniul $0,166 \mathrm{~g}$ şi $0,452 \mathrm{~g}$, valori înregistrate la varianta D , timpul de uzare fiind la toate de 140 ore.

5. Concluzii finale

5.1. Abordarea dezvoltării de noi materiale performante şi microstraturi plurifuncționalizate cu caracteristici îmbunătățite în ceea ce priveşte rezistența la eroziune și la uzare prin fiecare uscată are la bază depunerea pe substraturi de titan şi aliaje de titan a unor materiale ceramice prin pulverizare termică cu plasmă, urmată de retopiri cu fascicule de energie concentrată.
5.2. Examinările macro şi microscopice efectuate ảsupra microstraturilor depuse pe substraturi de titan și aliaje de" titan evidențiază atât elementele geometrice (formă, dimertsisiuni straturi, grosimi de strat etc.) cât şi microdurităţile specifice amestecului de ceramice oxidice (soluții solide binare, tę̧nare, cu particule fine de oxizi liberi) folosite, a căror durități sunt foarte ridicate (maximum 772 HV 1).
5.3. Încercările de eroziune cavitațională a microstraturilor atestă că degradarea suprafețelor microstraturilor se datörează efectului combinat al sensibilității materialelor ceramice la ecruisare mecanică, a modului de propagare a microfisùrilor de oboseală şi a smulgerilor de compuşi sau faze secuàdare fragile incoerente cu masa de bază.
5.4. Incercările la uzare uscată efectuate pe instalația MTU realizată în cadrul proiectului confirmă o rezistență ridićată la uzare a microstraturilor încercate la cinci cicluri , ele prezentând o aderență bună la substratul de titan și aliaje de titan. ')
5.5. Rezistențele ridicate la uzare uscată şi la eroziune cavitațională a microstraturilor depuse din materiale mețalice şi nemetalice prin procedee moderne, îşi găsesc aplicații industriale în acoperirea suprafețelor active ale componentelor cu rol de închidere - deschidere a circuitelor sistemelor ce lucrează la presiuni ridicate (distribuitoare, supape, diafragme, etc.).

Această lucrare a fost prezentată la Primul Congres Internațional de Sudură și Tehnologii de îmbinare, 7-9 octombrie 2008, Madrid, Spania.

5. Final conclusions

5.1. The development of new advanced materials and multifunctional microlayers with improved characteristics concerning the erosion and wear resistance is based on the deposition of the ceramic materials by plasma spraying, and followed by remelting with concentrated energy beams.
5.2. The macro and microscopical examinations of the microlayers deposited on the sublayers of titanium and titanium alloys evince the layers geometry (shape, dimensions and thickness), and the very high specific microhardness of the oxide ceramics mixture (binary, ternary solid solutions with fine particles of free oxides), of maximum 772 HV 1.
5.3. The cavitational erosion test made on the microlayers shows that the degradation of the microlayers surfaces is due to the combined effect of the ceramic materials sensitivity to mechanical cold hardening, and the way to propagate the fatigue microcracks and the compounds pulling-out or secondary brittle phases cohesionless with the base matrix.
5.4. The wear tests by dry friction, using the equipment MTU, confirm a high resistance to wear of the microlayers, tested at five cycles. They have a good adherence to titanium and titanium alloys sublayers.
5.5. The high wear and cavitation resistance of the metallic and non-metallic microlayers deposited by modern procedures can be applied in industry, to cover the active surfaces of components, having the aim to close-open the circuits within the systems working at high pressure and temperature (feeders, valves, diaphragms etc.).

Bibliografie/ References

[1]. Pascu, D.R. ş.a.: Microstructuri plurifuncționalizate pentru acoperirea aliajelor de titan prin tehnologii avansate, Proiect CEEX 266/2006-2008, Timişoara, România
[2]. Pascu, D.R. ş.a.: Cercetarea procesului de depunere a materialelor ceramice şi ceramo-metalice avansate, Proiect Nucleu 303/2008, Timişoara, România
[3]. Mitelea, I.: Selecția materialelor în ingineria mecanică, Editura Politehnica, 2008, Timişoara, România
[4]. Pascu, D.R., Drăgoi, S.: Procedeu şi pistolet de pulverizare termică în jet de plasmă şi arc electric, Propunere de invenție, 2008, OSIM Bucureşti, România
[5]. Dehelean, D. ş.a.: Tratat de tehnologii neconvenționale, Vol. VI, Prelucrarea prin eroziune cu fascicul de electroni, Editura ARTPRESS, 2005, Timişoara, România
[6]. Dankin, A.A. ş.a.: Abrazive wear resistance and character of rupture of the surface layers of titanium and zirconium borides, Powder Metalurgy and Ceramics, 2005, London, England
$\overline{\text { This paper was presented in the } 1^{s i} \text { International Congress on Welding }}$ and Joining Technologies, 7-9 Oct. 2008, Madrid, Spain.

Vizitați

www.isim.ro

พwuw Gid-ixisix

